Exercise 41

In contrast to the situation of Exercise 40, experiments show that the reaction $\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{HBr}$ satisfies the rate law

$$
\frac{d[\mathrm{HBr}]}{d t}=k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}
$$

and so for this reaction the differential equation becomes

$$
\frac{d x}{d t}=k(a-x)(b-x)^{1 / 2}
$$

where $x=[\mathrm{HBr}]$ and a and b are the initial concentrations of hydrogen and bromine.
(a) Find x as a function of t in the case where $a=b$. Use the fact that $x(0)=0$.
(b) If $a>b$, find t as a function of x. [Hint: In performing the integration, make the substitution $u=\sqrt{b-x}$.]

Solution

Part (a)

In the case where $a=b$, the differential equation simplifies to

$$
\frac{d x}{d t}=k(a-x)^{3 / 2} .
$$

This equation is separable, so we can solve for $x(t)$ by bringing all terms with x to the left and all constants and terms with t to the right and then integrating both sides.

$$
\begin{aligned}
d x & =k(a-x)^{3 / 2} d t \\
\frac{d x}{(a-x)^{3 / 2}} & =k d t \\
\int \frac{d x}{(a-x)^{3 / 2}} & =\int k d t
\end{aligned}
$$

Use a u-substitution to solve the integral on the left.

$$
\begin{aligned}
\text { Let } u & =a-x \\
d u & =-d x \\
\int \frac{-d u}{u^{3 / 2}} & =\int k d t \\
\frac{-1}{-\frac{1}{2}} \frac{1}{u^{1 / 2}} & =k t+C \\
2 \frac{1}{(a-x)^{1 / 2}} & =k t+C \\
\frac{2}{k t+C} & =(a-x)^{1 / 2} \\
\frac{4}{(k t+C)^{2}} & =a-x \\
x(t) & =a-\frac{4}{(k t+C)^{2}}
\end{aligned}
$$

We're told that $x(0)=0$, so we can determine C.

$$
\begin{aligned}
x(0)=a-\frac{4}{C^{2}} & =0 \\
a & =\frac{4}{C^{2}} \\
C^{2} & =\frac{4}{a} \\
C & = \pm \frac{2}{\sqrt{a}}
\end{aligned}
$$

We choose C to be $+\frac{2}{\sqrt{a}}$ so that the denominator doesn't equal 0 for any $t>0$. Therefore,

$$
x(t)=a-\frac{4}{\left(k t+\frac{2}{\sqrt{a}}\right)^{2}}, \quad a=b .
$$

Part (b)

Now we assume that $a>b$, so the differential equation remains as given.

$$
\frac{d x}{d t}=k(a-x)(b-x)^{1 / 2}
$$

The equation is separable, so to solve for $x(t)$ we have to bring all terms with x to the left and all constants and terms with t to the right and then integrate both sides.

$$
\begin{aligned}
d x & =k(a-x)(b-x)^{1 / 2} d t \\
\frac{d x}{(a-x)(b-x)^{1 / 2}} & =k d t \\
\int \frac{d x}{(a-x)(b-x)^{1 / 2}} & =\int k d t
\end{aligned}
$$

Use the u-substition given in the hint to solve the integral on the left.

$$
\begin{gathered}
\text { Let } u=\sqrt{b-x} \quad \rightarrow \quad u^{2}=b-x \quad \rightarrow \quad u^{2}-b+a=a-x \\
\qquad d u=-\frac{1}{2 \sqrt{b-x}} d x \quad \rightarrow \quad-2 d u=\frac{1}{\sqrt{b-x}} d x \\
\int \frac{-2 d u}{u^{2}+(a-b)}=\int k d t
\end{gathered}
$$

Recall that

$$
\int \frac{d u}{u^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{u}{a} .
$$

So

$$
\begin{aligned}
\frac{-2}{\sqrt{a-b}} \tan ^{-1} \frac{u}{\sqrt{a-b}} & =k t+C_{1} \\
-\frac{2}{\sqrt{a-b}} \tan ^{-1} \frac{\sqrt{b-x}}{\sqrt{a-b}}-C_{1} & =k t \\
t(x) & =-\frac{1}{k}\left(\frac{2}{\sqrt{a-b}} \tan ^{-1} \frac{\sqrt{b-x}}{\sqrt{a-b}}+C_{1}\right) .
\end{aligned}
$$

If we use the initial condition, $x(0)=0$, as we did before, we get

$$
\begin{aligned}
t(0)=-\frac{1}{k}\left(\frac{2}{\sqrt{a-b}} \tan ^{-1} \frac{\sqrt{b}}{\sqrt{a-b}}+C_{1}\right) & =0 \\
\frac{2}{\sqrt{a-b}} \tan ^{-1} \frac{\sqrt{b}}{\sqrt{a-b}}+C_{1} & =0 \\
C_{1} & =-\frac{2}{\sqrt{a-b}} \tan ^{-1} \frac{\sqrt{b}}{\sqrt{a-b}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& t(x)=-\frac{1}{k}\left(\frac{2}{\sqrt{a-b}} \tan ^{-1} \frac{\sqrt{b-x}}{\sqrt{a-b}}-\frac{2}{\sqrt{a-b}} \tan ^{-1} \frac{\sqrt{b}}{\sqrt{a-b}}\right) \\
& t(x)=-\frac{2}{k \sqrt{a-b}}\left(\tan ^{-1} \frac{\sqrt{b-x}}{\sqrt{a-b}}-\tan ^{-1} \frac{\sqrt{b}}{\sqrt{a-b}}\right) \\
& t(x)=\frac{2}{k \sqrt{a-b}}\left(\tan ^{-1} \frac{\sqrt{b}}{\sqrt{a-b}}-\tan ^{-1} \frac{\sqrt{b-x}}{\sqrt{a-b}}\right), \quad a>b .
\end{aligned}
$$

